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H Y D R A U L I C  J U M P  IN T H E  S H E A R  F L O W  O F  AN I D E A L  

I N C O M P R E S S I B L E  F L U I D  

V. M. Teshukov UDC 532.592.2+517.958 

This article examines a mathematical model representing a long-wave approximation for the motion of a layer of a 

turbulent ideal incompressible fluid with a free boundary above a level channel bottom. The equations of motion are represented 

in the form of a system of conservation laws for mass, total momentum, and vorticity in a mixed Eulerian--Lagrangian 

coordinate system. This system is then used as the basis for f'mding discontinuous solutions to integrodifferential equations in 

the theory of long waves. We studied the properties of relations for a hydraulic jump. It is shown that different types of jumps 

may occur, depending on the parameters of the incoming flow. It is found that discontinuous relations make it possible to 

determine the flow parameters behind a jump for any supercritical shear flow ahead of the jump. We consider the example of 

a steady-state solution dependent on a single parameter, this example illustrating the transition from one type of jump to 

another. 
Several investigations have studied the equations of long waves for a turbulent fluid. The authors of [1, 2] obtained 

infinite series for the conservation laws, while exact steady-state solutions describing flows with a critical layer were obtained 

in [3]. Particular solutions of the simple-wave type were constructed in [4, 5]. The conditions under which the equations of 

motion are hyperbolic were explained in [6]. 
1. Formulation of the Mathematical Model. We will examine the initial-boundary-value problem 

p (u  r + uu x + vu~,) + Px = O, 

~?P(vr + uv.r + g"r) + Pr = - Pg' 0 ~ Y ~ h(X,  T), 

u r +  vr = O, 
h r + u(X,  h, T)h x = v(X,  h, T), p(X,  h, T) = Po = const, 

v(X,  O, "13 = O, u(X,  Y, O) = uo(X, Y), h(X,  O) = ho(X ), 

(1.1) 

describing the flow of a layer of an ideal incompressible uniform (p = const) fluid with a free boundary Y = h(X, T) above 

a level channel bottom Y = 0. Here 

u I = ( g ~ r , ) ~ " u ,  v ~ = (ginl)~'~W~L;~v, f = g~,%Ze~V, 

p~ = R~p,  X ~ = LIX, P = 1r # = LI(g~/C~)-~'~T 

are dimensional components of the velocity vector, pressure, density, the cartesian coordinates in a plane, and time; u, v, p, 

o, X, Y, and T are the corresponding dimensionless quantities; R I has the dimension of density; gl has the dimension of 

acceleration (acceleration due to gravity G is connected with the dimensionless constant g by the relation G = gig2); H1 and 

L 1 are the characteristic vertical and horizontal scales. The initial data u o, h o were determined at 0 _< Y _< ho(X), - oo < 
X < o o .  

An approximate theory of long waves (theory of shallow water) is established with passage to the limit e = HiL-~ 1 --, 

0. The conservation equation for the vertical component of momentum in the limit gives the hydrostatic law of pressure 

distribution in the depth direction: 

P r  = - Pg  (p(X, h, 73 = Po)- (1.2) 
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We use the continuity equation and (1.2) to obtain the equations 

Y 

p = o ~ h  - ~ + po, u = - f . x a r .  
0 

When e = O, we can use these relations to reduce problem (1.1) to a Cauchy problem 

(1.3) 

p ( u  r + u u  x + vua. ) + p g h  x = 0 (0  ~ Y <~ h ( X ,  T ) ) ,  

h r + - ~  u d  = O, 

u(X,  Y, o) = Uo(X, r ) ,  h (x ,  O) = ho(X ) 

(1.4) 

for unknown functions u(X, Y, T), h(X, T). Pressure and the vertical component of velocity are determined by Eqs. (1.3). 

Equation (1.4) leads us to the vorticity conservation equation: 

(o~) T + u(o~)x + o(o~):, = 0 (co = % )  

(in the approximation of  long-wave theory, vorticity coincides with - u v ) .  The equation just given has the following 

consequence: if o~ = 0 at the initial moment of  time, then r = 0 at all T. In the case of  irrotational flow, Eq. (1.4) reduces 

to the classical equations of  the theory of shallow water: 

u r + uu  x + g h  x = O , h  r +  ( u h ) x  = O. (1.5) 

Discontinuous solutions of the system of shallow-water equations model moving hydraulic jumps. To obtain relations 

linking the parameters of  the flow on both sides of the jump, we need to convert Eqs. (1.5) into a system representing the 

conservation laws for horizontal momentum and mass in the fluid layer: 

( p h u ) r  + (phu2)x  + (2-1pgh2)x = O, p h  r + (,ouh)x = O. (1.6) 

We use (1.6) to obtain relations for the front of  the discontinuity X = x(t): 

l p h ( u  - D)  2 + 2-1pgh  2 ] = O, [ph(u  - D) I = 0. (1.7) 

Here, [f] = f+ - f -  is the difference between the limiting values of the function f on the line of  discontinuity X = x(t); D 

= x'(t) is the velocity of the front. The sign of  u - D determines the direction of the flow relative to the front. The condition 

for stability of the discontinuous flow reduces to decay of the total energy of  the layer upon intersection with the line of 

discontinuity. One consequence of this condition is the inequality 

lu - DI > ~ ;  (1.8a) 

[u - D[ < ~ .  (1.8b) 

Inequality (1.8a) must be satisfied for limiting values of the flow parameters ahead of the front, while (1.8b) must be satisfied 

behind the front (supercritical and subcritical flows relative to the front). 

More accurate modeling of actual flows requires that we consider the dependence of the profile of horizontal velocity 

on the vertical coordinate (Uy ~ 0). An approximate approach employed in hydraulics connects mean flow velocity in the depth 

direction U with mean-square velocity 

h h 

~u'(x, T) = h -1 f u2dY ( f udY = hU) (1.9) 
0 0 
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Fig. 1 

(a is an empirical parameter which corrects for the momentum of the flow). By integrating the first equation of motion (1.4) 

over Y and using (1.9), we can close the equations for the mean quantities and use relations for the discontinuity that have an 
empirical constant. 

Our goal here is to propose a model of hydraulic jumps in a turbulent flow on the basis of conservation laws that follow 

from the basic equations of motion. We propose to use relations for the discontinuity to determine the depth of the layer, mean 

velocity, and the overall profile of velocity in the depth direction. 
We should briefly discuss the main features of the modeling of discontinuous flows such as those being examined here. 

Discontinuity of the trajectory of the particles is a characteristic feature of the model - -  a feature that importantly distinguishes 

hydraulic jumps from other types of discontinuities known in hydrodynamics. The fluid particles suddenly move to another 

height when they cross the front of the discontinuity (Fig. 1, where the trajectory of a particle is represented by the dashed 
line). Thus, when deriving the balance relations for the front, we need to connect values of the flow parameters at different 
Eulerian points (points A and B in Fig. 1). We have no a priori knowledge of the location of the point B where the particle 

leaves the jump region after entering at point A. Thus, the first step in constructing a mathematical model is to change over 

to mixed Eulerian--Lagrangian coordinates by means of the relations 

T =  t , X =  x, Y =  ~(x , t ,  2) 

(~ is the vertical Lagrangian variable). Here, ,I~(x, t, X) is the solution of the Cauchy problem 

(It,, + u(x, ~ ,  t ) ~  = o, ~ (x ,  0, ,~) = ,~ho(x). (1.10) 

[61 

In the new variables, the flow regions correspond to the zone 0 _< h _< 1, while the equations of motion take the form 

1 

u + u ~  + g f ~ d o  = 0; 
tl 

I4, + (uH)~ = 0 (H(x,  t, ,~) = ,t,~(x, t, a) ) .  

(1.11a) 

(1,11b) 

A second important element of the modeling process is the selection of the system of conservation equations. Equation 

(1.1 lb) expresses the local mass conservation law. After multiplying (1.1 la) by H and integrating over X, we also obtain the 

conservation law for the total horizontal momentum of the layer: 

1 1 

( f uHdv), + ( f u2Hdv + 2-~gh2)x = 0. (1.12) 
0 0 

We need one more local relation to close the model. The divergence equation, being a consequence of system (1.4), 

1 

(pHu)x + (,oHu2)~, + (pH)~, - (P~x)a = 0 (p = pg f Hdv + Po) (1.13) 
1 

formally coincides with the local conservation law for momentum. However, Eq. (1.13) loses meaning for discontinuous 

solutions of the type we are examining. 
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In fact, if the quantities u, @, H, and p have first-order discontinuities at x = x(t), then the last term in (1.12) becomes 

meaningless. The quantity under the derivative sign for ), is mathematically indeterminate, this being the product of the 

discontinuous function p and the function ,I, x. The latter function has a singularity of the Dirac delta function type at x = x(t). 

As an additional closing equation, we propose using a corollary of the equations of  motion - -  the vorticity conservation 

law 

( a , ~ ,  + ( u a , ~ x  = 0 (co = u~ = u / t - * ) ,  (1.14) 

which is also formulated in mathematically determinate terms in the case of flows with discontinuous trajectories. In sum, we 

propose to find discontinuous solutions to the equations of long waves by using system of  conservation laws (1.11b), (1.12), 

and (1.14). Writing these laws in integral form leads us to the following equations at the front of  the jump: 

1 

[H(u - D)]  = 0, [ f H ( u  - D)2da + 2-1gh21 = 0, [toH(u - D ) l  = 0. (1.15) 
0 

In the special case of  irrotational flow, Eqs. (1.15) coincide with (1.7) (if u 1 = 0, then, in accordance with (1.10), 

H = h(X, T)). We use Eqs. (1.15) to obtain the corollaries (the first relation is valid at points on the front where H(u - D) 

# 0) 

[col = 0, [~]a = 0 (Rs = (2g)-t(u _ 0)2 + (pg)-~p + i9. (1.16) 

This means that vorticity is conserved in the Lagrangian particle with the crossing of the discontinuity. The quantity 

xI, is called the total head in hydraulics. The last relation means that the jump in the total head (calculated in a coordinate 

system that moves with the front) is independent of depth (since the pressure is hydrostatic). 

It is known that vorticity is conserved along trajectories in the exact model of the plane-parallel flow of  an ideal 

incompressible fluid. This fact supports the use of  conservation law (1.14) in the theory of discontinuous flows - -  at least for 

low-amplitude jumps. 

Along with Eqs. ( I .  15), we also need to satisfy the condition for the reduction in the total energy of  the layer with the 

transition of the flow across the front when either D - u >__ 0 or D - u < 0 on the front. With allowance for (1.15), this 

condition can be represented in the form 

1 

f H ( u  - D ) 1 2 - 1 p ( u  - D) 2 + p + pg~lda >/0, (1.17) 
0 

where [fix, t, X)] = f(x(t) + 0, t, X) - -  f(x(0 - -  0, t, X). 

2. Proper t ies  of  Relat ions  for  a Hydraul ic  Jump.  Let us assume that the flow parameters u = u t,  H = H l are known 

ahead of the front along with the velocity D of the jump. We will examine the question of determining the parameters of the 

flow behind the front. The last relation of (1.15) is written as 

I u , ( u  - D ) ]  = 0.  

Thus, K = [(u - D) 2] is independent of X. For the sake of definiteness, let the flow arrive at the front from the left: u 1 - 

D > 0. Then [u - -  D) 2] = (u 1 - -  D) 2 - -  ( u  2 - -  D) 2 and 

u a - D = ((u I - D) 2 - /01/2 (K ~ K.  = min(u I -- D)2). (2.1) 
~t 

The first relation of  (1.15) allows us to determine 

/r = / ~ ( u l  - D)((u~ - D) 2 - / 0 - " =  (2.2) 

(the subscript 2 pertains to parameters behind the front). Inserting U 2 and H 2 into the conservation law for total momentum, 
we obtain 
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to determine K E (0, K,). Here 

F ( X )  - F ( 0 )  = o (2.3) 

1 

F(x3  = f ~r~(u~ - D)((,,~ - 1>) ' - ~ " a a  
0 
1 

+ 2-~g( f H~(,,~ - D)(( ,  5 - 0 ) '  - ~ - ~ ' ~ ) ~ .  
0 

By virtue of  (1.16), the quantity [2-10(u - -  D) 2 + p + og'I'] = og[9]  is independent of X. Thus, the sign of  the expression 

in the left side of (1.17) coincides with the sign of or(K) = g[9] .  The derivative of the function o(K) is calculated in the form 

1 

o'(K) = 2-1(1 - g f H I ( u  I - D ) ( ( u  1 - D)  2 - K)-3/2d.2).  
0 

At K --- - -  oo a'(K) -*.2 -1,  while at K --- K, o'(K) -* - -  oo. Since ~r"(K) < 0, there exists a unique value K o such that o'(K o) 

= 0. It follows from the equality o(0) = 0 that o(K) has a unique positive maximum at the point K o. It follows from these 
properties that o(/) > 0 for any l within the interval from 0 to K if o(K) ~ 0. 

The derivatives of  o(K) and F(K) are connected by the relation 

F'(X') = - h~(X')o'(X) 
1 

(h~(h3 = f H~(u~ - D ) ( ( u  1 - D)  ~ - X 3 - ~ ' ~ ) .  
o 

(2.4) 

We obtain the following equality as a corollary of  this relation 

K 

.F(K) - F(O) = -- h 2 ( K ) a ( K  ) + f h '2( l )a(1)dl .  
0 

(2.5) 

Equality (2.3) and the inequality o(K) _> 0 are incompatible at K < 0. In fact, if ~r(K) _> 0, then a(/) > 0 for l between 0 

and K. Also, since t12(/) > 0, both terms in the right side of (2.5) are negative at K < 0. Thus, roots K of  (2.3) satisfying 

the inequality o(K) _> 0 can be found only on the interval (0, K,). The function a will be positive at positive K only when the 

assigned parameters of  the flow satisfy the inequality ~'(0) > 0; here, K o E (0, K,). The function F decreases monotonically 

on the interval (0, Ko) and reaches a minimum F(Ko) < F(0). It then increases monotonically on the interval (K 0, K,). If  F(K,) 

> F(0), then Eq. (2.3) has the unique root K s on the interval (K 0, K,) and o'(Ks) < 0 at point K s. 

At F(K,) _< F(0), Eq. (2.3) has no roots on the interval (0, K,). If  K = K,, then u 2 - D vanishes at those points 
where (u 1 - D) 2 = K,. We will assume that the minimum value of (u I - D) 2 is reached only at the point X = X, We can 

then find the parameters U2, ~2 behind the discontinuity, with ~2 undergoing a jump at 3, = X.: 

,t,2(x(O, t, a)  = ~ ( x ( O ,  t, a)  + r  0 o 0 ,  - a . ) .  (2.6) 

1 
Here, ~2 is a continuous function; 0(X - X.) is the Heaviside function (0 = 1 at X > X., 0 = 0 at ), < X.). In the regions 

X < X. and X > X,,.u 2 and H 2 are determined by formulas (2.1) and (2.2) with K = K.. We take u 2 = D in an interlayer 
of thickness 7/: 

h.  = f S . ( u  I - D ) ( ( u l  - 0 )  2 - r . ) - l " ' a a  < Y < ~ + h . .  
o 
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The total depth of  the layer of  fluid behind the discontinuity is determined by the equality h = h2(K,) + r/. We obtain the 

following for 77 from the conservation law for total horizontal momentum (1.15) 

2-tg(h2(K.) + r/) 2 = 2-1gh22(K.) - ( F ( K . )  - F(0)). (2.7) 

The right side of  (2.7) is positive, since F(K,) < F(0). This allows us to unambiguously fred the thickness of  the interlayer 

r/ = [h~(K.) - 2 g - I ( F ( K . )  - F(0))11/2 _ h2(K.)" (2.8) 

By virtue of Eq. (2.4) 

l(,p 

a ( K . )  = - h ; I ( K . ) ( F ( K . )  - F(0)) - fh~2h'2(1)(F(l) - F(O))d l  > O, 
0 

Inequality (1.17) is thus satisfied (when y E (h., h.  + ~/)u 2 = D, with the interlayer making no contribution to the energy 

flux). We should note that the first condition of  (1.15) is satisfied in the sense of generalized functions at values of I, 2 

determined by (2.6). 

The inequalities e'(0) > 0, o ' (K s) < 0 can be represented in the form 

1 

1 - g f  H I ( u  1 - D)-2d~ > 0; (2.9a) 
o 

J 

1 - g f  H2(u 2 - D)-2dA < 0. (2.9b) 
o 

It was shown in [6] that Eqs. (1.11) have real-valued characteristics determined by the differential equations x'(t) = ki(x, t) 

(i = 1, 2), where k i are roots of  the equation 

1 

1 - g f  t't(u - k)- 'da = 0 (k 1 < minu, k 2 > maxu). (2.10) 
0 ,~ ,t 

Then inequalities (2.9) represent the conditions that must be satisfied for the flow to be supercritical ahead of  the front and 

subcritical behind it. For the situation being examined, expressions (2.9) lead to the Lachs condition for the stability of a 
1 

discontinuity k~ < D < k 1 (the subscript denotes the state for which the characteristic root k I is calculated). Similar 

inequalities are satisfied when F(K.) < F(0). It follows from (2.9) that the velocity of the front D approaches the characteristic 

velocity as the amplitudes of  the discontinuity approach zero. 

After we find u 2, 1,2, and H 2 = 1,2x, we can change over to the variables X, Y, T once we have expressed X in terms 
of X, Y, and T from the equation Y = 1,2(X, T, 3,) (Y = ,I,I(X, T, X) in the region ahead of the jump). By virtue of these 

relations, the vertical Eulerian coordinate Y = Y2 behind the jump is connected with the Eulerian coordinate ahead of the jump 

Y = Y1 by the relation Y2 = Y2(Y1) - We represent Eqs. (1.15) as 

(u i - D)dY~ = (u 2 - .O.)dY,, (u I - D)du I = (u, - D)d, 2, 

h I hl 

f(u,- + 2-1gh  = f(u2 - ~ + 2- gh  �9 
0 0 

In sum, we can conclude that two types of hydraulic jumps can propagate at supercritical (in the sense of (2.9a)) 

velocity D ahead of the front in the given state. For the first type, u 2 - D # 0 behind the front. This type of jump is possible 

if the assigned flow and the velocity of the jump D satisfy the conditions F(K,) - F(O) > 0. If F(K,) - F(O) _< 0 and if (u I 

- D) 2 reaches a minimum at a single point, then a jump may occur with the presence of a stagnant (relative to the front) zone; 

on the front behind the jump, u 2 - D = 0 at h, < y _< h, + ~/. If (u I - D) 2 reaches its minimum value immediately at 

several points, then only the total thickne_ss of the interlayers can be determined from the balance of total momentum. 

It should be noted that transients develop in steady (in the system of reference of the front) flows before the steady state 

is reached completely, and the formation of stagnant zones may depend on the previous history of the system. For a monotonic 
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Fig. 2 

velocity profile, when u lv  # 0, the minimum value of  (u 1 - D) is reached either on the bottom or on the free surface. The 

formation of  a stagnant section on the front near the free surface might be interpreted in one of  two ways: the possible 

appearance of  a pronounced "roll" [7]; the appearance of  a region of reverse flow near the bottom. The authors of  [3] presented 

examples of  steady-state solutions of  Eqs. (1.4) describing flows with closed streamlines and regions of reverse flow in the 

neighborhood of  the critical layer (u - D) = 0. Possible flow patterns are shown in Fig. 2. It is clear that the pattern of flow 

in the region behind the front is also determined by conditions to the right of  the front. 

As an example, we will examine a steady hydraulic jump on a shear flow. Let a steady flow with the velocity ui(Y) 

= Uexp(yY), v1(Y) = 0 (where U is a positive constant, 3, = 3~1 ,  3 = cons0 be assigned at X < 0 in a layer 0 < Y ___ 

h 1. The law governing the correspondence between the entry and exit points of  the trajectories Y2(Y1) at the front is found as 

the solution of  the problem 

dr/ar, = , , , (~ ,O(u~( r , )  - x3 -* ,~ ,  r ~ ( o )  = o .  

Integration yields the relation 

exp(yVl) = ch(yV2) + (1 - K1) l /2sh(YY2)  ( r l =  K U'2) 

and the expression for velocity behind the front (X > 0) 

U2(Y2) = U((1 --KI)I/2ch(YY2) + sh(yY2) ). (2.11) 

The condition that must be satisfied for the flow ahead of  the front to be supercritical (2.9a) is equivalent to the inequality 

F~ 2 < 2,8(1 - e x p (  - 2f l ) )  -1 ( F  1 = V ( g h l ) - l ) .  

The resulting relations allow us to calculate 

F(K) - F(0) = (2fl)-l.~lU2[ea(e ~ - 1(1) 1/2 - (1 - 1(1) t'~ 

- Kllnt(ea + (e ~ - Kx)V2)(1 + (l - K1)1/2) -I} 

+ fl-lF~'12(ln{(ea + (e za - K1)1/2)(1 + (1 - Kx)V2)-l}) 2 - e 2# + 1 - flF~2]. 

At 3 > 0, K 1 = 1 corresponds to the value K = K, = U 2. Let 3 = In 3. The inequality F(K,) - F(0) > 0 is satisfied for 

Froude numbers F 1 satisfying the inequalities 1.17468 > F 1 > 0.63604. In this case, the equation F(K) - F(0) = 0 has the 

single root K 1 in the interval (0.1). Then v2(Y) = 0 and u2(Y ) is determined by Eq. (2.11) in the region behind the front (X 

> 0), while the depth of  the fluid layer is determined by the formula 

h2 = h2(Kt )  = fl-lhxln{(ea + (e ~ - K1)1/2)(1 + (1 -- K1)1/2)-1 } (/5 = In3). 

If  F 1 > 1.17468, then the total depth of  the fluid layer behind the jump is determined by the expression 

h 2 = [h~(1) - 2g-I(F(U 2) - F(0))] t/2. 
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At 0 < Y < h 2 - h2(1), u2(Y) = 0 and v2(Y ) = 0. In the layer h 2 - h2(1) < Y < h2, the horizontal component of velocity 

u2(Y) is given by Eq. (2.11). Here, Y2 must be replaced by the quantity Y + h2(1 ) - h 2. The vertical component of velocity 

v2(Y ) = 0. The second solution describes flow with a hydraulic jump and a stagnant zone near the bottom. 

Let us address the question of  determining the flow parameters UE(X, t, X), H2(x, t, X) behind the front of a weak 

hydraulic jump on the basis of  assigned parameters ul(x,  t, )0, Ht(x, t, X), D. Here, it is convenient to take K = e < <  1. 

If we represent u 2 - D and H 2 in the form 

u 2 -  D =  u t - D +  et3u v H  2 = H  1 + et)H 2 

(~u 2 and tSH 2 are the sought perturbations) and if we satisfy the relations for the discontinuity with first-order accuracy, we 

will have 

6u 2 = - (2(u~ - D)) -~, c~H 2 = 2-~H~(u~ - D) -2. (2.12) 

Here, it is necessary that D = k~, where k~ is the root of  characteristic equation (2.10) calculated for state 1. In Eulerian 

coordinates, we obtain the following representations for the parameters of the flow behind the jump: 

Y 
d~/ 

u~(Y) = ul(y) - 2-1~((u~(V) - 0 )  -1 + ulyfr3) of ( . # ~ -  n)  ~' 

h 2 = h t + (2g)-te. 

The correspondence between the points on the jump is given by the equation: 

)'1 
L f dT/ 

I"2 = Y, + 2 o (u1(rfi"-- D) 2" 

It was shown in [6] that, under certain conditions (conditions under which the system is hyperbolic), system (I .  11) leads to 

the Riemannian invariants 

R + uR,,= 0, to + uto x =  0, r +k ' r=  = 0 ( i =  1 ,2) .  

Here, R(x, t, X), co(x, t, X), and ri(x, t) are determined by the formulas 

i ~O,)av ~ zY(__._~)_d~ 

-0 
U('I,') k i 

(k 1 and k 2 are roots of the characteristic equation; for the sake of brevity, the dependence of the functions on the variables x 

and t is not indicated in the notation). The author of [8] analyzed simple waves (particular solutions of system (1. i 1) having 

the form u = u(c~(x, t), )x), H = H(c~(x, t), ),), ~x t + k l %  = 0) and showed that R = R0x), o~ = to(X), r 2 = r ~ = const, in 

the region of a simple wave if R = R(~,), to = co(),), r i = const ahead of this wave (conservation of  the Riemannian invariants 

R, to, and r 2 in a simple wave propagating at the characteristic velocity kl). 

For the given case of flow behind a weak hydraulic jump 

I f  ~H2(v)dv f HtO')(~u2(v) - ~u2('~)) dv 
~R, = ,~,~ - g u:,,--) - u1~) + g "o . . . .  = O, 

o (u~(v) - ul(,t)) 2 

,~to = ( , ~ u 2 h n ;  1 - u , / e ? 2 ~ H ~  = O. 

i ,~H2(v)d v 1 Hl(v~%dv 

,5,., = - g o f "10'--'S Z I,--21 + g o f ("1("---~) Z ,2--~)~ - o. 

(2.13) 
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1 Equations (2.13) are verified directly using Eqs. (2.12) and Eq. (2.10), the roots of which are k 1 and k~. Thus, in the 

transition through a weak leftward hydraulic jump, the changes in the Riemarmian invariants R, r and r 2 are of a higher order 
than the amplitude of the jump. Here, as in gasdynarnics, there is an analogy between the behavior of simple waves and low- 
amplitude discontinuities. 

The model proposed here for hydraulic jumps describes a new type of hydrodynamic discontinuity associated with 

sudden changes not only in velocity and pressure, but also the Eulerian coordinate of particles. In an actual flow, the movement 
of a particle to a new elevation occurs over a finite distance. However, the size of the region over which this transition takes 
place is small compared to the characteristic scale of long-wave processes. Thus, in an approximate theory, the transition is 
modeled by a discontinuity in the particle trajectory. An analysis of the model shows that this approach is quite suitable for 
describing low-amplitude discontinuities. Within the range of large amplitudes, the model indicates that changes might take 
place in the structure of the flow within the region behind the jump. Empirical velocity profiles measured in the depth direction 
are needed to determine the level of agreement between theory and experiment. 
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